H=-16t^2+80t-1

Simple and best practice solution for H=-16t^2+80t-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+80t-1 equation:



=-16H^2+80H-1
We move all terms to the left:
-(-16H^2+80H-1)=0
We get rid of parentheses
16H^2-80H+1=0
a = 16; b = -80; c = +1;
Δ = b2-4ac
Δ = -802-4·16·1
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-24\sqrt{11}}{2*16}=\frac{80-24\sqrt{11}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+24\sqrt{11}}{2*16}=\frac{80+24\sqrt{11}}{32} $

See similar equations:

| 223=159-v | | -w+231=189 | | 1.86=-602z | | 3(-5v-4)=-6v-39 | | 4-n=3n+16 | | 4v-3=4(v-2)+5 | | -6+4b=1+5b | | -8x-3(-4+-7x)=-1 | | 6x+3x+5+9x-5=180 | | 2m=7m | | 5x+2=2+6x | | 1=-v+7 | | 3(-5x+3)=-5(3x+1) | | 38+8y=-3(-6-4y) | | 6-2(3-2x)=-4(3-x | | 31/8=x-21/4 | | -5/7+1/2w=-2/3 | | 6y-4y-10=31.46 | | 25/8=m-9/2 | | 3z−2=7 | | 3m-9=23+m | | 4x-1+2x+9+3x+19=342 | | 9(2x+10)=2(9x+45) | | 2x^2-98x=-720 | | -10-7n=-6(n+4) | | 1/2(x−10)=7 | | -6x+8=4x-112 | | -6x+8=4x-122 | | 4p+12+26=180 | | 2x1-x=-2 | | 4f-9+8f=-30 | | -6x-4=84+5x |

Equations solver categories